3.339 \(\int \frac {x^3 \tan ^{-1}(a x)^2}{(c+a^2 c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=305 \[ \frac {\sqrt {a^2 c x^2+c} \tan ^{-1}(a x)^2}{a^4 c^2}-\frac {2 i \sqrt {a^2 x^2+1} \text {Li}_2\left (-\frac {i \sqrt {i a x+1}}{\sqrt {1-i a x}}\right )}{a^4 c \sqrt {a^2 c x^2+c}}+\frac {2 i \sqrt {a^2 x^2+1} \text {Li}_2\left (\frac {i \sqrt {i a x+1}}{\sqrt {1-i a x}}\right )}{a^4 c \sqrt {a^2 c x^2+c}}-\frac {2}{a^4 c \sqrt {a^2 c x^2+c}}+\frac {\tan ^{-1}(a x)^2}{a^4 c \sqrt {a^2 c x^2+c}}+\frac {4 i \sqrt {a^2 x^2+1} \tan ^{-1}\left (\frac {\sqrt {1+i a x}}{\sqrt {1-i a x}}\right ) \tan ^{-1}(a x)}{a^4 c \sqrt {a^2 c x^2+c}}-\frac {2 x \tan ^{-1}(a x)}{a^3 c \sqrt {a^2 c x^2+c}} \]

[Out]

-2/a^4/c/(a^2*c*x^2+c)^(1/2)-2*x*arctan(a*x)/a^3/c/(a^2*c*x^2+c)^(1/2)+arctan(a*x)^2/a^4/c/(a^2*c*x^2+c)^(1/2)
+4*I*arctan(a*x)*arctan((1+I*a*x)^(1/2)/(1-I*a*x)^(1/2))*(a^2*x^2+1)^(1/2)/a^4/c/(a^2*c*x^2+c)^(1/2)-2*I*polyl
og(2,-I*(1+I*a*x)^(1/2)/(1-I*a*x)^(1/2))*(a^2*x^2+1)^(1/2)/a^4/c/(a^2*c*x^2+c)^(1/2)+2*I*polylog(2,I*(1+I*a*x)
^(1/2)/(1-I*a*x)^(1/2))*(a^2*x^2+1)^(1/2)/a^4/c/(a^2*c*x^2+c)^(1/2)+arctan(a*x)^2*(a^2*c*x^2+c)^(1/2)/a^4/c^2

________________________________________________________________________________________

Rubi [A]  time = 0.40, antiderivative size = 305, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {4964, 4930, 4890, 4886, 4894} \[ -\frac {2 i \sqrt {a^2 x^2+1} \text {PolyLog}\left (2,-\frac {i \sqrt {1+i a x}}{\sqrt {1-i a x}}\right )}{a^4 c \sqrt {a^2 c x^2+c}}+\frac {2 i \sqrt {a^2 x^2+1} \text {PolyLog}\left (2,\frac {i \sqrt {1+i a x}}{\sqrt {1-i a x}}\right )}{a^4 c \sqrt {a^2 c x^2+c}}+\frac {\sqrt {a^2 c x^2+c} \tan ^{-1}(a x)^2}{a^4 c^2}-\frac {2}{a^4 c \sqrt {a^2 c x^2+c}}+\frac {\tan ^{-1}(a x)^2}{a^4 c \sqrt {a^2 c x^2+c}}+\frac {4 i \sqrt {a^2 x^2+1} \tan ^{-1}\left (\frac {\sqrt {1+i a x}}{\sqrt {1-i a x}}\right ) \tan ^{-1}(a x)}{a^4 c \sqrt {a^2 c x^2+c}}-\frac {2 x \tan ^{-1}(a x)}{a^3 c \sqrt {a^2 c x^2+c}} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*ArcTan[a*x]^2)/(c + a^2*c*x^2)^(3/2),x]

[Out]

-2/(a^4*c*Sqrt[c + a^2*c*x^2]) - (2*x*ArcTan[a*x])/(a^3*c*Sqrt[c + a^2*c*x^2]) + ArcTan[a*x]^2/(a^4*c*Sqrt[c +
 a^2*c*x^2]) + (Sqrt[c + a^2*c*x^2]*ArcTan[a*x]^2)/(a^4*c^2) + ((4*I)*Sqrt[1 + a^2*x^2]*ArcTan[a*x]*ArcTan[Sqr
t[1 + I*a*x]/Sqrt[1 - I*a*x]])/(a^4*c*Sqrt[c + a^2*c*x^2]) - ((2*I)*Sqrt[1 + a^2*x^2]*PolyLog[2, ((-I)*Sqrt[1
+ I*a*x])/Sqrt[1 - I*a*x]])/(a^4*c*Sqrt[c + a^2*c*x^2]) + ((2*I)*Sqrt[1 + a^2*x^2]*PolyLog[2, (I*Sqrt[1 + I*a*
x])/Sqrt[1 - I*a*x]])/(a^4*c*Sqrt[c + a^2*c*x^2])

Rule 4886

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(-2*I*(a + b*ArcTan[c*x])*
ArcTan[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]])/(c*Sqrt[d]), x] + (Simp[(I*b*PolyLog[2, -((I*Sqrt[1 + I*c*x])/Sqrt[1
- I*c*x])])/(c*Sqrt[d]), x] - Simp[(I*b*PolyLog[2, (I*Sqrt[1 + I*c*x])/Sqrt[1 - I*c*x]])/(c*Sqrt[d]), x]) /; F
reeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0]

Rule 4890

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + c^2*x^2]/Sq
rt[d + e*x^2], Int[(a + b*ArcTan[c*x])^p/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*
d] && IGtQ[p, 0] &&  !GtQ[d, 0]

Rule 4894

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[b/(c*d*Sqrt[d + e*x^2]),
 x] + Simp[(x*(a + b*ArcTan[c*x]))/(d*Sqrt[d + e*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d]

Rule 4930

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[((d + e*x^2)^
(q + 1)*(a + b*ArcTan[c*x])^p)/(2*e*(q + 1)), x] - Dist[(b*p)/(2*c*(q + 1)), Int[(d + e*x^2)^q*(a + b*ArcTan[c
*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && NeQ[q, -1]

Rule 4964

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[1/e, Int[
x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p, x], x] - Dist[d/e, Int[x^(m - 2)*(d + e*x^2)^q*(a + b*Arc
Tan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegersQ[p, 2*q] && LtQ[q, -1] && IGtQ[m
, 1] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x^3 \tan ^{-1}(a x)^2}{\left (c+a^2 c x^2\right )^{3/2}} \, dx &=-\frac {\int \frac {x \tan ^{-1}(a x)^2}{\left (c+a^2 c x^2\right )^{3/2}} \, dx}{a^2}+\frac {\int \frac {x \tan ^{-1}(a x)^2}{\sqrt {c+a^2 c x^2}} \, dx}{a^2 c}\\ &=\frac {\tan ^{-1}(a x)^2}{a^4 c \sqrt {c+a^2 c x^2}}+\frac {\sqrt {c+a^2 c x^2} \tan ^{-1}(a x)^2}{a^4 c^2}-\frac {2 \int \frac {\tan ^{-1}(a x)}{\left (c+a^2 c x^2\right )^{3/2}} \, dx}{a^3}-\frac {2 \int \frac {\tan ^{-1}(a x)}{\sqrt {c+a^2 c x^2}} \, dx}{a^3 c}\\ &=-\frac {2}{a^4 c \sqrt {c+a^2 c x^2}}-\frac {2 x \tan ^{-1}(a x)}{a^3 c \sqrt {c+a^2 c x^2}}+\frac {\tan ^{-1}(a x)^2}{a^4 c \sqrt {c+a^2 c x^2}}+\frac {\sqrt {c+a^2 c x^2} \tan ^{-1}(a x)^2}{a^4 c^2}-\frac {\left (2 \sqrt {1+a^2 x^2}\right ) \int \frac {\tan ^{-1}(a x)}{\sqrt {1+a^2 x^2}} \, dx}{a^3 c \sqrt {c+a^2 c x^2}}\\ &=-\frac {2}{a^4 c \sqrt {c+a^2 c x^2}}-\frac {2 x \tan ^{-1}(a x)}{a^3 c \sqrt {c+a^2 c x^2}}+\frac {\tan ^{-1}(a x)^2}{a^4 c \sqrt {c+a^2 c x^2}}+\frac {\sqrt {c+a^2 c x^2} \tan ^{-1}(a x)^2}{a^4 c^2}+\frac {4 i \sqrt {1+a^2 x^2} \tan ^{-1}(a x) \tan ^{-1}\left (\frac {\sqrt {1+i a x}}{\sqrt {1-i a x}}\right )}{a^4 c \sqrt {c+a^2 c x^2}}-\frac {2 i \sqrt {1+a^2 x^2} \text {Li}_2\left (-\frac {i \sqrt {1+i a x}}{\sqrt {1-i a x}}\right )}{a^4 c \sqrt {c+a^2 c x^2}}+\frac {2 i \sqrt {1+a^2 x^2} \text {Li}_2\left (\frac {i \sqrt {1+i a x}}{\sqrt {1-i a x}}\right )}{a^4 c \sqrt {c+a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.87, size = 209, normalized size = 0.69 \[ \frac {\sqrt {c \left (a^2 x^2+1\right )} \left (-\frac {4 i \text {Li}_2\left (-i e^{i \tan ^{-1}(a x)}\right )}{\sqrt {a^2 x^2+1}}+\frac {4 i \text {Li}_2\left (i e^{i \tan ^{-1}(a x)}\right )}{\sqrt {a^2 x^2+1}}-\frac {4 \tan ^{-1}(a x) \log \left (1-i e^{i \tan ^{-1}(a x)}\right )}{\sqrt {a^2 x^2+1}}+\frac {4 \tan ^{-1}(a x) \log \left (1+i e^{i \tan ^{-1}(a x)}\right )}{\sqrt {a^2 x^2+1}}+3 \tan ^{-1}(a x)^2-2 \tan ^{-1}(a x) \sin \left (2 \tan ^{-1}(a x)\right )+\tan ^{-1}(a x)^2 \cos \left (2 \tan ^{-1}(a x)\right )-2 \cos \left (2 \tan ^{-1}(a x)\right )-2\right )}{2 a^4 c^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^3*ArcTan[a*x]^2)/(c + a^2*c*x^2)^(3/2),x]

[Out]

(Sqrt[c*(1 + a^2*x^2)]*(-2 + 3*ArcTan[a*x]^2 - 2*Cos[2*ArcTan[a*x]] + ArcTan[a*x]^2*Cos[2*ArcTan[a*x]] - (4*Ar
cTan[a*x]*Log[1 - I*E^(I*ArcTan[a*x])])/Sqrt[1 + a^2*x^2] + (4*ArcTan[a*x]*Log[1 + I*E^(I*ArcTan[a*x])])/Sqrt[
1 + a^2*x^2] - ((4*I)*PolyLog[2, (-I)*E^(I*ArcTan[a*x])])/Sqrt[1 + a^2*x^2] + ((4*I)*PolyLog[2, I*E^(I*ArcTan[
a*x])])/Sqrt[1 + a^2*x^2] - 2*ArcTan[a*x]*Sin[2*ArcTan[a*x]]))/(2*a^4*c^2)

________________________________________________________________________________________

fricas [F]  time = 0.62, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {a^{2} c x^{2} + c} x^{3} \arctan \left (a x\right )^{2}}{a^{4} c^{2} x^{4} + 2 \, a^{2} c^{2} x^{2} + c^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arctan(a*x)^2/(a^2*c*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(a^2*c*x^2 + c)*x^3*arctan(a*x)^2/(a^4*c^2*x^4 + 2*a^2*c^2*x^2 + c^2), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arctan(a*x)^2/(a^2*c*x^2+c)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 2.78, size = 294, normalized size = 0.96 \[ \frac {\left (\arctan \left (a x \right )^{2}-2+2 i \arctan \left (a x \right )\right ) \left (i a x +1\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{2 \left (a^{2} x^{2}+1\right ) a^{4} c^{2}}-\frac {\sqrt {c \left (a x -i\right ) \left (a x +i\right )}\, \left (i a x -1\right ) \left (\arctan \left (a x \right )^{2}-2-2 i \arctan \left (a x \right )\right )}{2 \left (a^{2} x^{2}+1\right ) a^{4} c^{2}}+\frac {\arctan \left (a x \right )^{2} \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{a^{4} c^{2}}-\frac {2 i \left (i \arctan \left (a x \right ) \ln \left (1+\frac {i \left (i a x +1\right )}{\sqrt {a^{2} x^{2}+1}}\right )-i \arctan \left (a x \right ) \ln \left (1-\frac {i \left (i a x +1\right )}{\sqrt {a^{2} x^{2}+1}}\right )+\dilog \left (1+\frac {i \left (i a x +1\right )}{\sqrt {a^{2} x^{2}+1}}\right )-\dilog \left (1-\frac {i \left (i a x +1\right )}{\sqrt {a^{2} x^{2}+1}}\right )\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{\sqrt {a^{2} x^{2}+1}\, a^{4} c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*arctan(a*x)^2/(a^2*c*x^2+c)^(3/2),x)

[Out]

1/2*(arctan(a*x)^2-2+2*I*arctan(a*x))*(1+I*a*x)*(c*(a*x-I)*(I+a*x))^(1/2)/(a^2*x^2+1)/a^4/c^2-1/2*(c*(a*x-I)*(
I+a*x))^(1/2)*(-1+I*a*x)*(arctan(a*x)^2-2-2*I*arctan(a*x))/(a^2*x^2+1)/a^4/c^2+arctan(a*x)^2*(c*(a*x-I)*(I+a*x
))^(1/2)/a^4/c^2-2*I*(I*arctan(a*x)*ln(1+I*(1+I*a*x)/(a^2*x^2+1)^(1/2))-I*arctan(a*x)*ln(1-I*(1+I*a*x)/(a^2*x^
2+1)^(1/2))+dilog(1+I*(1+I*a*x)/(a^2*x^2+1)^(1/2))-dilog(1-I*(1+I*a*x)/(a^2*x^2+1)^(1/2)))/(a^2*x^2+1)^(1/2)*(
c*(a*x-I)*(I+a*x))^(1/2)/a^4/c^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3} \arctan \left (a x\right )^{2}}{{\left (a^{2} c x^{2} + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arctan(a*x)^2/(a^2*c*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^3*arctan(a*x)^2/(a^2*c*x^2 + c)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^3\,{\mathrm {atan}\left (a\,x\right )}^2}{{\left (c\,a^2\,x^2+c\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*atan(a*x)^2)/(c + a^2*c*x^2)^(3/2),x)

[Out]

int((x^3*atan(a*x)^2)/(c + a^2*c*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3} \operatorname {atan}^{2}{\left (a x \right )}}{\left (c \left (a^{2} x^{2} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*atan(a*x)**2/(a**2*c*x**2+c)**(3/2),x)

[Out]

Integral(x**3*atan(a*x)**2/(c*(a**2*x**2 + 1))**(3/2), x)

________________________________________________________________________________________